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An error measure, referred to as the hysteresis error, is developed from the Crooks fluctuation theorem to
evaluate the sampling quality in free-energy calculations. Theory and the numerical free energy of hydration
calculations are used to show that Hamiltonian replica exchange provides a direct route for minimizing the
hysteresis error. Replica exchange swap probabilities yield the rate at which the hysteresis error falls with the
simulation length, and this result can be used to decrease bias and statistical errors associated with free-energy
calculations based on multicanonical simulations.
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I. INTRODUCTION AND OVERVIEW

The free energies of solvation provide quantitative assess-
ments of the driving forces for spontaneous processes such
as protein folding, binding, self-assembly, and solubility.
Formally, the free energy of solvation in the canonical en-
semble is the free-energy change �F associated with the
transfer of a solute from the gas phase to a fixed position in
the solvent �1�. Operationally, one has access to a range of
techniques to obtain estimates for �F �2,3�. Kirkwood �4�
showed that one could introduce arbitrary parameters into
potential functions and continuously vary the degree of cou-
pling between specific molecules in a dense fluid. The device
of coupling parameters leads to simple expressions for the
chemical potentials of any component of the fluid. If the
component is the solute molecule, which is transferred from
the gas phase into the solvent, then a single coupling param-
eter �, where 0���1, modulates solute-solvent interactions
in the system’s potential function. The limits �=0 and �=1
correspond to the pure solvent and solvent plus fully grown
solute, respectively. Intermediate values of � correspond to
potential functions that include only a part of the solute-
solvent interactions. The Kirkwood coupling parameter plays
a central role in equilibrium methods for calculating �F. One
carries out a series of independent canonical simulations
where each simulation is associated with a distinct potential
function, characterized by a specific � value. As it samples
the equilibrium ensemble, each simulation generates a series
of work values, which are then used to estimate the free-
energy change across the entire � schedule.

The multicanonical approach described above takes ad-
vantage of the simple formalism developed by Kirkwood for
calculating �F. However, in practice, standard free-energy
calculations based on multicanonical simulations are plagued
by slow convergence and inaccurate estimates of �F �5�.
Errors may be divided into statistical and bias �or finite sam-
pling� errors �6�. The former stem from the fluctuations of
the free-energy estimator and can be estimated by block av-
eraging or bootstrap methods �7,8�. Since the statistical error
decreases as the inverse square root of the simulation length,
it is frequently used as an indicator of the convergence of the
multicanonical simulation. While statistical errors are ran-
dom fluctuations of short simulation results about some

mean value, the bias error is an error of the mean value itself
and it changes with simulation length. As discussed by Zuck-
erman and Woolf �9�, bias errors have two causes: The free-
energy estimates are nonlinear averages, and the work distri-
butions on which such estimates are based will typically
have long tails which are rarely sampled, and yet these are
important to the average. The latter point is important: Rare
events dominate free-energy estimates, and one seldom ob-
serves these events in short simulations. As a result, the av-
erage drifts with simulation length, resulting in inaccurate
estimates for �F from bias error even when the statistical
error is small. The magnitude of the bias error is difficult to
quantify directly, as it requires knowledge of the actual free-
energy difference, the very quantity we wish to determine.
Furthermore, small fluctuations in the estimate for �F may
not be indicative of convergence, but rather of inadequate
sampling of the rare but important configurations. To address
these problems, we develop an alternate measure of free-
energy error, one based on deviations from equilibrium dis-
tributions.

Crooks �10� derived a fluctuation theorem �Appendix A 1�
valid for stochastic, microscopically reversible dynamics,
which relates the distribution of dissipated work values along
a forward and reverse path as

exp��WD� =
PF��WD�

PR�− �WD�
. �1�

Here, �= �kBT�−1, PF��WD� is the probability distribution for
dissipated work associated with switching � from �0 to �1,
and PR�−�WD� is the corresponding distribution for the re-
verse process. If the canonical simulations for each value of
� sample the equilibrium ensemble adequately, then the dis-
tributions of dissipated work obtained over the course of
free-energy calculations will satisfy Eq. �1�.

In this work, we develop a readily measured error esti-
mate, the hysteresis error �H, which quantifies the degree to
which the observed work distributions obey the Crooks fluc-
tuation theorem. Hamiltonian replica exchange, a multica-
nonical equilibration technique, effectively reduces the hys-
teresis error. We relate the average replica exchange swap
probability to the degree of overlap between equilibrium en-
sembles, as well as to the rate at which �H falls. Based on
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this, we may construct an optimized � schedule to further
minimize the hysteresis error for an entire simulation.

The remainder of this presentation is organized as fol-
lows: The theory section introduces the hysteresis error in
the context of the Crooks fluctuation theorem followed by a
formal illustration of how Hamiltonian replica exchange
minimizes �H, the definition of swap probability as a measure
of the overlap between different equilibrium ensembles, and
a connection between the amount of overlap and minimiza-
tion of �H. We calculate the free energy of hydration for
acetamide to demonstrate how to estimate �H and minimize
this error using replica exchange coupled to standard multi-
canonical simulations. We conclude with a summary and a
discussion of the features of our methodology.

II. THEORY

A. Background

The free energy of replica i in the canonical ensemble at
temperature T, whose potential Ui���=U�� ,�i� is a function
of system configuration � and the parameter �i, is formally
given as �11�

Fi = − �−1 ln�� d� exp�− �Ui����� . �2�

At equilibrium, the probability of observing configuration �
is given as

�i��� = exp���Fi − Ui����	 . �3�

To calculate the free-energy change �F associated with
switching the Hamiltonian from U0 to U1 we perform simu-
lations at �0 and �1 and calculate the forward and reverse
work as

WF��� = U1��� − U0��� , �4a�

WR��� = U0��� − U1��� . �4b�

For the forward and reverse work values the configuration �
is typically drawn from the equilibrium ensemble of U0 and
U1, respectively. The free-energy perturbation �FEP� method
�12� utilizes forward and reverse work distributions to pro-
vide two independent estimators for �F,

�FFEP
F = − �−1 ln
exp�− �WF��0, �5a�

�FFEP
R = + �−1 ln
exp�− �WR��1, �5b�

where the forward estimator �FFEP
F utilizes forward work

values from the simulation at U0 and the reverse estimator
the reverse work from U1. Note that in both cases �F is
associated with the process of switching �0→�1. These two
estimators have different convergence rates �6�. Therefore,
while in practice the two estimates should be equal, in simu-
lations with finite sampling they are generally different.

Another free-energy estimator, the Bennett acceptance ra-
tio �13�, uses both the WF and WR distributions to obtain a
free-energy estimate. It is generally more accurate �14� and is
employed later in this paper for numerical free-energy esti-

mates, but will not be considered for theoretical develop-
ment.

B. Hysteresis error

The hysteresis error �H is defined as the difference be-
tween the forward and reverse �FFEP estimates,

�H � �FFEP
F − �FFEP

R . �6�

�H has contributions from both the statistical and bias error
of the FEP estimators �6,9�. The bias error of the two esti-
mators is typically in the opposite direction. While the sta-
tistical error may dominate the �H for a given simulation, in
averages over multiple short simulations the dominant con-
tribution to the average hysteresis error is the sum of the
forward and reverse FEP bias.

We take �H as a measure of sampling quality and aim to
minimize its magnitude between all pairs of neighboring rep-
licas. The validity of using �H as a general sampling error is
based on a relationship between it and the fluctuation theo-
rem of Crooks, Eq. �1�, derived below.

Switching the parameter �0→�1 �and vice versa� is
equivalent to performing nonequilibrium work; the differ-
ence between the work performed and the free-energy
change of the system is the dissipated work, defined in the
forward and reverse directions as

WD
F��� = WF��� − �F , �7a�

WD
R��� = WR��� + �F . �7b�

Crooks �10� equates WD
F and WD

R to the entropy production
caused by changing �0→�1 and �1→�0, respectively, for
the given configuration.

The distributions PF�WD� and PR�WD� give the probabil-
ity of realizing a specific value for the dissipated work in the
forward and reverse directions, respectively. The distribu-
tions are related to each other by the fluctuation theorem
shown in Eq. �1�, which we have rederived in Appendix A 1
for the specific case of instantaneous switching between con-
figurations with different � values. In practice, Eq. �1� will
not be satisfied exactly because of errors due to finite sam-
pling. To take simulation errors into account, we rewrite Eq.
�1� with an arbitrary error term �FT

� and with observed �rather
than ideal� dissipated work distributions PF

� and PR
� ,

exp��WD + ��FT
� �WD�� =

PF
���WD�

PR
��− �WD�

. �8�

Equation �8� is constructed such that the Crooks fluctuation
theorem is recovered and �FT

� =0 when the observed work
distributions match the correct distributions. The hysteresis
error �H and the fluctuation error �FT

� are related to each other
as �see Appendix A 2�

�H = − �−1 ln
exp�− ��FT
� ��0

�, �9�

where 
¯�� is defined as the average obtained from a finite
simulation. The more closely a simulation obeys the relation-
ship �1�, the smaller the hysteresis error �H and vice versa. In
the next section, we will discuss methods to reduce �H,
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which in turn leads to the satisfaction of the Crooks fluctua-
tion theorem.

C. Replica exchange

In a Hamiltonian replica exchange �15,16� simulation,
Monte Carlo moves are employed to exchange configura-
tions � �or, equivalently, parameters �� between two replicas
with probability

Pswap = min�1,exp�− ��Uswap�� , �10�

where

�Uswap = U0��1� + U1��0� − U0��0� − U1��1� �11a�

=WF + WR �11b�

=WD
F + WD

R . �11c�

�0 and �1 denote configurations drawn at random from the
equilibrium ensembles of U0 and U1, respectively. For con-
venience, we write 	= ��0 ,�1� as a pair of such configura-
tions and 	�= ��1 ,�0� is the swapped configuration pair.

Since �0 and �1 are independent configurations, we can
consider the probability of sampling �0 in the equilibrium
ensemble of U0 and sampling �1 in the equilibrium ensemble
of U1; this is the native probability �N�	�. Analogously, the
joint probability of sampling the swapped configurations, �1
from �0 and �0 from �1 is given as �N� �	�

�N�	� = �0��0��1��1� , �12a�

�N� �	� = �0��1��1��0� = �N�	�� . �12b�

Replica exchange swaps are conveniently visualized by plot-
ting the independent configurations �0 and �1 along orthogo-
nal axes and the equilibrium ensemble of the system as an
isocontour of �N, illustrated in Fig. 1�a�.

At equilibrium, the relative probability of observing a pair
of replicas in their swapped versus native configurations is

�N�

�N
= exp�− ��Uswap� , �13�

which is derived from definitions �12�, �3�, and �11a�. We
will refer to this as an interreplica equilibrium relationship.

In an infinitely long simulation, �13� will be satisfied ex-
actly, but this will generally not be the case for finite simu-
lations, where inadequate sampling of configuration space
will result in inaccurate probability estimates. However, in
simulations with replica exchange we expect the interreplica
equilibrium relationship to be satisfied more closely than in
simulations without replica exchange, because the swap
move distributes configuration pairs in such a way as to sat-
isfy Eq. �13�. To illustrate, consider the system in Fig. 1�a�
where the U0 replica is presumed to be stuck in the left lobe
of the �0 distribution because of a kinetic barrier. Without
replica exchange, only the heavily shaded region of �N will
be sampled accurately. The simulation will not have a correct
estimate for �N� �	c�=�N�	c��, since �0 for the swapped con-
figuration, never having been observed, will be inaccurate.
Consequently, Eq. �13� will not hold. Replica exchange di-
rectly populates swapped configurations �e.g., 	c��, thereby
improving the statistics of �N� and allowing interreplica equi-
librium to be achieved more quickly for all configurations in
�N.

The degree to which Eq. �13� is satisfied determines the
magnitude of the hysteresis error. To illustrate this, suppose
that the distribution �N� has some small error ����0 ,�1� due to
finite sampling, so that we write ��N� +��� as the numerator in
Eq. �13�. In Appendix A 3 we show, by integrating over all
configuration pairs, that the relationship between the hyster-
esis error and the error of sampling the swapped distribution,
�� is

Γ1

Γ0

γc

γb

γa
γ’b γ’cγ’a

Γ
0

Γ
1

Γ

(a) (b) (c)

ρΝ
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ρ0
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ρ0

ρ1

ρ1

ρ1

ρ'Ν

FIG. 1. �Color online� A graphical representation of replica exchange. �a� The independent �high-dimensional� configuration spaces �0

and �1 have probability distributions �0 and �1, respectively, and the joint equilibrium ensemble �N is drawn over this domain. The �0 system
has a kinetic barrier �represented by the two disconnected lobes�, and with no replica exchange the system explores only the configurations
of the shaded domain. A replica exchange swap is a reflection of the configuration pair 	 about the �0=�1 diagonal axis, and three swap
attempts are shown: The configuration pair 	a swaps successfully and becomes 	a�, but it does not sample otherwise inaccessible regions; a
swap of 	b fails because 	b� is not in the equilibrium ensemble; and the swap of 	c succeeds and allows the system to explore otherwise
inaccessible regions of phase space. �b� The equilibrium domain �N and its swapped image �N� are drawn. Swaps are feasible only for
configuration pairs which belong to both �N and �N� . This overlap region, labeled pswap, is the domain where the integrand of Eq. �17b� is
large and its integral corresponds to the average swap probability 
pswap�. �c� The overlap of the �0 and �1 distributions along the common
configuration �0=�1. For the hysteresis error to converge, the �0 simulation must observe configurations where �1
�0 and the �1 simulation
must adequately sample the region �0
�1. The frequency with which this occurs is approximately given by 
pswap�.
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�H 
 − �−1� d�0d�1��. �14�

The hysteresis error, then, will be minimized when the esti-
mated swapped configuration probabilities �N� are consistent
with the equilibrium distribution. Since replica exchange
populates the swapped configurations directly, it provides an
efficient route to minimizing �H.

D. Swap probability

Analysis of the average replica exchange swap probability
is complicated by the fact that the Metropolis function �Eq.
�10�� is not analytical. For the purposes of interpreting this
quantity, we will instead consider the Fermi swap probability

pswap = f���Uswap� ,

where f�x� is defined as

f�x� = 1/�1 + exp�x�� . �15�

�See �13� for a discussion.� We use pswap to denote the Fermi
swap probability and Pswap for the Metropolis swap probabil-
ity; while the theoretical development uses pswap, replica ex-
change moves are accepted or rejected using Pswap. A simu-
lation with either the Metropolis or Fermi swap probability
will yield a Boltzmann distribution of swapped and un-
swapped configurations �Eq. �13��. While the exact numeri-
cal values of the Fermi and Metropolis swap probabilities
will differ somewhat, their qualitative behavior and the con-
clusions drawn here will hold for both.

The average Fermi swap probability for two systems
evolving independently is


pswap� � 

f���Uswap��0�1 �16a�

=� d�0d�1�Nf���Uswap� , �16b�

which can be written as


pswap� = �� �N�

�N + �N�
�

0
�

1

�17a�

=� d�0d�1
�N�N�

�N + �N�
. �17b�

The integrand of �17b� is a normalized probability of observ-
ing a given configuration pair, and the average swap prob-
ability is then the overlap of �N and �N� . See Fig. 1�b� for a
graphical interpretation. Thus, a large average swap probabil-
ity implies a large overlap between the equilibrium distribu-
tions of the two replicas and a low 
pswap� indicates that the
configurations these replicas adopt are distinct.

We can expand �16a� in a Taylor series about �=�0+��.
To leading order in ��, we find that in the neighborhood of �0
the average swap probability is �see Appendix A 4�


pswap� 

1

2
−

�2��
2

4
C�, �18�

where

C� � var� �U

��
� = 
��U/���2�0 − 
�U/���0

2.

C�, then, determines the rate at which the average swap
probability declines as the difference in � between the two
replicas, ��, increases, although this linear analysis is accu-
rate only for small ��.

E. Swap probability and the hysteresis error convergence rate

We now demonstrate that the average swap probability
between two replicas gives a measure of how quickly the
hysteresis error decreases, on average, over the course of a
simulation. The hysteresis error is the difference between the
forward and reverse �FFEP, and since the forward and re-
verse FEP estimators do not converge at equal rates �6�, it is
the slower of these which governs the convergence of �H.

We may rewrite Eq. �5a� as


exp�− �WD
F��0 = 1. �19�

For this to hold, we must sample configurations where WD
F

�0; since the dissipated work is on average greater than zero
by the second law of thermodynamics, such configurations
tend to be rare �17�. As a result, the convergence rate of
�FFEP

F is governed by the probability of observing negative
dissipated forward work values. Likewise, the convergence
of �FFEP

R is dictated by observations of WD
R �0. We can un-

derstand this criterion graphically with the relationships �see
Appendix A 1�

�0��0�
�1��0�

= exp��WD
F��0�� , �20a�

�1��1�
�0��1�

= exp��WD
R��1�� . �20b�

In the context of Fig. 1�c�, observing WD
F �0 corresponds to

sampling configurations from the �0 distribution where �1

�0, and for WD

R �0 we require �0
�1 when sampled from
the �1 distribution.

Turning our attention to the average swap probability, we
note that �Uswap, which is the sum of WD

F and WD
R , is nega-

tive whenever �N� 
�N �by Eq. �13��. Configurations for
which this is the case are sampled by a simulation only in the
lower-right half of the domain labeled pswap in Fig. 1�b�. The
larger this domain, whose size is given by the average swap
probability, the more frequently negative values of WD

F and
WD

R are observed and the more quickly the hysteresis error
converges. A numerical confirmation of this argument—that
low swap probabilities correspond to large hysteresis errors
and vice versa—is demonstrated in the results section.

III. METHODS

The computational system consists of 21 replicas, each
with a different �, which are simulated independently to ob-
tain equilibrium statistics. The parameter � controls the non-
bonded interactions between an acetamide �ACE� solute and
the water molecules. Two independent sets of simulations
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were performed, with and without replica exchange, in order
to investigate the effect of this technique.

The Lennard-Jones and Coulomb interactions between the
water and ACE molecules are scaled by �LJ and �C, respec-
tively. We scaled both parameters simultaneously, such that
�LJ=�C; the single parameter � then refers to both terms.
This choice, while not commonplace in free-energy calcula-
tions, was made to simplify the replica exchange implemen-
tation, and since the free energy is a state function, any path
through ��LJ ,�C� space is valid �18�. The specific way in
which the Lennard-Jones and Coulomb terms scale with � is
described in Appendix B. � varies across the 21 replicas
from 0 to 1 in increments of 0.05.

Each replica consists of 343 water molecules and one
ACE molecule, which is rigid and whose position is fixed in
the central box. All simulations were performed at constant
temperature �298 K� and volume �21.8 Å cubic box� using
Metropolis Monte Carlo sampling. Parameters from the
OPLS-AA force field �19� and four-site TIP4P water model
�20� were used to model the solute and solvent, respectively.
Minimum image boundary conditions and spherical cutoffs
were employed for the Coulomb and Lennard-Jones poten-
tials. The cutoff radius was 10.5 Å for electrostatic interac-
tions and 10 Å for van der Waals interactions. Cutoffs were
group based for the former and atom based for the latter. No
long-range corrections were employed. All simulations were
carried out using the MCCCS Towhee �21� Monte Carlo simu-
lation package �36�.

The initial configurations for all replicas were identical
and correspond to the end point of a preequilibration run
with ACE in water. For each replica, simulations consisted of
2�106 cycles, where a cycle corresponds to 343 Monte
Carlo moves; each move combines rotations and translations
of a randomly chosen individual water molecule. The initial
105 cycles were discarded for equilibration. The average ac-
ceptance rate for all replicas was 31%.

The replica exchange simulation consists of a number of
simulation rounds, where each replica evolves independently,
separated by swap rounds, when a number of swap attempts
take place. The length of the simulation round was drawn
from a normal distribution with a mean of 500 and standard
deviation of 50 cycles. Five hundred cycles is the approxi-
mate energy autocorrelation “time.” The swap round consists
of 212 swap attempts between randomly selected replica
pairs. Allowing swaps beyond neighboring replicas increases
the efficiency of replica exchange by allowing a replica to
traverse the entire range of � from 0 to 1 more quickly than
if only neighbor swaps were permitted �22�.

During the course of the simulation, the native �Ui��i��
and foreign �Uj�i��i�� potential energies, as well as values
for dU /d�C and dU /d�LJ �where dU /d�=dU /d�LJ
+dU /d�C�, were saved every ten cycles. These were then
post-processed to obtain the free energies, the hysteresis er-
ror, swap probabilities, and C�, regardless of whether actual
replica exchange swaps took place. The total free energy of
hydration, �F, is the sum of all free-energy changes ��F�i

between neighboring replicas i and i+1, calculated using the
Bennett acceptance ratio method �13�,

�F � �
i

M−1

��F�i,

where M is the total number of replicas. Similarly, �rms is the
root mean square of the hysteresis error ��H�i between neigh-
boring replicas,

�rms ���
i

M−1

��H�i
2/M .

Statistical errors for �F were estimated using the bootstrap
method �8�. With the simulation data set consisting of N
observations, we drew n� observations at random and with
replacement to create one bootstrap estimate �F�. This pro-
cess was repeated 10 000 times, and the standard deviation
among all the �F� is the estimated error of �F. n� is the
expected number of independent observations in the data set;
here, n�=1900 with the assumption that there is one indepen-
dent observation per two internal energy autocorrelation
“times” �23�.

IV. RESULTS

A. Acetamide free energy of hydration

The hydration free energies we calculate for acetamide
are in line with results obtained by other researchers, as
shown in Table I. All numerical results differ somewhat from
experimental values due to differences in force field param-
eters. Our calculations were carried out in the canonical en-
semble. Therefore, we obtain estimates for the Helmholtz
free energy �F, whereas the experimental and other compu-
tational values obtain estimates for the Gibbs free energy

TABLE I. The hydration free energy of acetamide. �a� The
Helmholtz hydration free energy �F for the current work, as calcu-
lated by the Bennett acceptance ratio, and the root-mean-square
hysteresis error. The �F statistical errors are calculated by the boot-
strap method. �b� Published values of the Gibbs free energy �G,
obtained both computationally and experimentally. All computa-
tional results utilize the OPLS-AA force field for the solute aceta-
mide. Also noted are the water model and free-energy estimator �TI,
thermodynamic integration; FEP, free-energy perturbation; BAR,
Bennett acceptance ratio�.

�a� Acetamide free energy of hydration: current work

�F �kcal/mol� �rms �kcal/mol�
No replica exchange −8.35
0.051 0.120

Replica exchange −8.14
0.053 0.023

�b� Acetamide free energy of hydration: literature

�G �kcal/mol� Details

MacCallum and Tieleman �26� −8.25
0.26 TIP4P, TI

Shirts et al. �25� −8.20
0.03 a TIP3P, TI

Chang et al. �27� −8.54
0.1–0.3 TIP4P, BAR

Udier-Blagović et al. �28� −9.65
0.3–0.5 TIP4P, FEP

Experimental �29� −9.54

aNo long-range van der Waals corrections.
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�G. Since the box volume at �=0 was adjusted to corre-
spond to 1 atm, the distinction between these two values
should be negligible �24� even with some “pressurizing” due
to insertion of the acetamide �25�; test calculations of �G in
the N-P-T ensemble confirm this assertion �data not shown�.
The general consistency between our results and those of
others serves to verify our implementation and sampling
technique.

The methods to calculate �G in the N-P-T ensemble do
not differ from those for calculating �F in the N-V-T en-
semble; in particular, the replica exchange swap probability
�10� does not change, since the pressure-volume work is re-
versible and does not contribute to the dissipated work.

Table I shows the differences between results obtained
with and without replica exchange. As expected from our
theoretical considerations, we find that the root-mean-square
hysteresis error is lowered by an order of magnitude when
replica exchange is coupled to the multicanonical sampling
protocol. However, it should be noted that the statistical error
estimated using the bootstrap method remains unaffected.
This is not an artifact of the bootstrap method used to esti-
mate statistical errors. Instead, fluctuations in estimates for
�F originate in fluctuations of the underlying work distribu-
tion, shown in Eq. �1�. As long as both simulations sample
the work distribution adequately, they will have similar sta-
tistical error associated with them. As a cautionary note, low
statistical errors can also be caused by inadequate sampling
of the appropriate work distributions. The statistical error
between two replicas can be reduced by decreasing the �
distance between them, and an optimal � schedule can re-
duce it for an entire simulation.

B. Hysteresis error and replica exchange

For a fixed � schedule, the hysteresis error may be re-
duced with either an improved sampling methodology like

replica exchange or longer simulations per replica. The ef-
fects of both approaches are illustrated in Fig. 2.

Panel �a� shows �H for each neighboring replica pair. The
hysteresis error is not uniform across all pairs, with spikes in
the region �=0.1–0.3. Replica exchange systematically re-
duces the hysteresis error for all pairs of replicas.

Panel �b� illustrates how both longer sampling and replica
exchange affect the hysteresis error. Block averaging shows
that the average root-mean-square hysteresis error declines
consistently with longer simulations. This reduction can be
improved with replica exchange; in fact, a simulation with
replica exchange will achieve the same magnitude of �rms

about five times more quickly than one without replica ex-
change.

C. Average swap probability

Figure 3 shows downward spikes in the swap probability
for values of � where the hysteresis error is large in Fig. 2�a�.
These results are consistent with the proposal that swap
probability between two replicas is an indicator of the rate at
which �H is minimized. The same region is characterized by
a positive spike in C�, which is expected based on the rela-
tionship between the swap probability and C� in Eq. �18�.
However, while the swap probability calculation requires
two separate simulations, estimates of C� can be obtained
from just one. Moreover, 
pswap� varies as the distance be-
tween the replicas changes, complicating the interpretation if
the � schedule is not uniform. Evaluation of C� as a function
of � using a preliminary, coarse � schedule can identify re-
gions where the swap probability is expected to be low, and
can be used to construct optimal � schedules, as discussed in
Sec. V B.
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FIG. 2. �Color online� �a� The hysteresis error between neighboring replicas. Replica exchange effectively reduces the hysteresis error for
replica pairs. �b� Block averages of the root-mean-square hysteresis error, showing that the hysteresis error falls with increasing block size.
Replica exchange increases the rate at which hysteresis error is lowered, thereby achieving the same magnitude error with simulations which
are on average 4–8 times shorter.
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V. DISCUSSION

A. Physical interpretation of the C� profile

To gain a physical interpretation of the profile for C�

shown in Fig. 3, we plot in Fig. 4 the average water density
in a 2.5-Å sphere surrounding the carbonyl carbon of aceta-
mide. The plot shows that water occupancy around the grow-
ing solute decreases rapidly in the range of ��0.15. The
expulsion and rearrangement of water molecules during cavi-
tation leads to a large shift in the equilibrium ensemble, giv-
ing rise to a pronounced spike in C�. �Smaller shifts in C�

near �=1 reflect electrostatic effects and are not observed for
simulations where �C=0, data not shown.� Thus, C� profiles

serve as useful probes for detecting large shifts in equilib-
rium ensembles. Regions where the equilibrium ensembles
change most rapidly are the regions that contribute the larg-
est errors in free-energy calculations.

B. Optimal � schedule for free-energy calculations

For given computational resources, with the number of
replicas and the simulation length fixed, the root-mean-
square hysteresis error of a simulation may be decreased by
optimizing the � schedule or the distribution of � across the
replicas. The swap probability gives the rate at which the
average hysteresis error falls between two replicas, and in an
optimized simulation it would be uniform across all replica
pairs. In practice, it is difficult to obtain the � schedule which
makes the swap probability exactly uniform, but reasonable
approximations can be made by using the linearized swap
probability, given by Eq. �18�.

First, it is necessary to perform some number of prelimi-
nary simulations to obtain C� along a coarse � schedule.
These initial simulations need not be as long as the final
production runs, since C� converges more quickly than �F
and is more tolerant of error. With a rough estimate of C����
in hand, the � schedule can be adjusted to ensure that the
linear swap probability is uniform between all replicas. Al-
ternatively, one might simply shift replicas from where C� is
small to where it is large. Both approaches are only approxi-
mate and break down when the linear response assumption in
Eq. �18� ceases to be valid. They may be applied iteratively
as C� is evaluated for new � schedules.

The aim of an optimal � schedule is to place replicas
close together in regions where the C� profile shows spikes.
This ensures reasonable swap probabilities and minimal hys-
teresis errors in regions that are problematic. Preliminary in-
vestigations show that even when the schedule is improved
in an ad hoc manner, hysteresis as well as statistical errors
decrease.

C. Replica exchange

Replica exchange provides a Monte Carlo move which
may allow a replica to access a distant part of its equilibrium
ensemble in one step. It is no substitute for conformational
exploration within a replica. This point, while obvious, must
be emphasized in the context of the hysteresis error, which
does not report on the quality of intrareplica sampling. As an
extreme but illustrative case, consider a system of some
number of frozen replicas, each with a different configura-
tion, which undergo replica exchange moves but no confor-
mational changes. With just a modest number of swaps, these
configurations attain the probability distribution described by
Eq. �13� and the hysteresis error is zero. The system has
achieved interreplica equilibrium, but the intrareplica prob-
ability distribution has not been obtained. In practice, the
majority of Monte Carlo moves must be within a replica. The
optimal frequency of swap moves remains an open question,
although preliminary simulations suggest that more frequent
swaps reduce the hysteresis error more quickly.

It is worthwhile to relate the replica exchange-based free-
energy calculations presented here to other generalized en-
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FIG. 3. �Color online� The average swap probability between
adjacent replicas and C�=var��U /��� evaluated for each replica
�from the replica exchange simulation; simulation with no replica
exchange is not significantly different�. Spikes in C� indicate re-
gions of low swap probability.
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FIG. 4. �Color online� Water density within 2.5 Å of the aceta-
mide carbonyl carbon as � varies. The inset illustrates the position
and size of the observation volume with respect to an acetamide
molecule. Density is normalized by the bulk density. As � increases,
waters are expelled by the growing cavity.
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semble techniques, particularly �-dynamical methods
�30–32�. There, � is a dynamical variable which evolves in
time according to the conjugate force �U /��, with additional
terms typically added to the Hamiltonian to associate with �
a momentum and to restrict its range. Since � fluctuates,
equilibrium distributions associated with a fixed � cannot be
calculated and measures like the swap probability and the
hysteresis error are no longer defined. Nonetheless, both
classes of techniques attempt to distribute atomic configura-
tions across a range of � values according to a Boltzmann
distribution; �-dynamical generalized ensemble techniques
generate this distribution dynamically, whereas replica ex-
change techniques utilize a Markov chain to the same effect.
Sampling difficulties in both cases are associated with phase
changes and a large variance of �U /��, or C�. This results in
low swap probabilities �for replica exchange� or regions in �
space not easily traversed �for � dynamics�, and these prob-
lems may be overcome with improved � schedules or modi-
fied biasing potentials, respectively. One practical advantage
of replica exchange techniques is that they are readily paral-
lelizable across a number of computers, a trait not shared by
all �-dynamical methods.

VI. SUMMARY AND CONCLUSION

In a simulation of multiple replicas, each sampling the
equilibrium ensemble of a different Hamiltonian, swapping
configurations between replicas is a nonequilibrium work
process. Accordingly, the work needed to perform such
swaps has a distribution of values, as described by the
Crooks fluctuation theorem. The hysteresis error �H devel-
oped here measures how closely a given simulation repro-
duces these work distributions between a pair of replicas.

The hysteresis error is particularly useful in the context of
free-energy calculations. It reports on the combined bias of
the forward and reverse free-energy perturbation techniques,
and it measures how completely individual replicas sample
their equilibrium ensemble. The root-mean-square hysteresis
error, which reports on �H for the whole � schedule, may be
decreased by running a longer simulation, employing replica
exchange, utilizing an improved � schedule, or all of these
approaches.

The average swap probability is another useful measure
and can be calculated whether or not replica exchange is
employed. Since it determines the rate at which the hyster-
esis error decreases with simulation length, the swap prob-
ability can be used to optimize the � schedule. With a uni-
form average swap probability the hysteresis error falls
evenly between all replica pairs. This maximizes the effi-
ciency of simulations with fixed computational resources,
avoiding unnecessary replicas where the hysteresis is low
and preventing excessive errors from regions where the hys-
teresis error is large.

The swap probability, along with a related measure C�,
yields insight into the microscopic behavior of a system. The
swap probability is low and C� is large when the equilibrium
ensemble changes rapidly with �—for instance, during phase
changes. Slow convergence and bias errors in free-energy

calculations arise when there are spikes in the C� profile
along the � schedule, resulting in large hysteresis errors.
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APPENDIX A: DERIVATIONS

1. Fluctuation theorem derivation

We derive the Crooks fluctuation theorem �1� in the con-
text of instantaneously switching �0→�1 �forward� and �1
→�0 �reverse�. Expanding the ratio �0 /�1 with �3� for an
arbitrary configuration �,

�0���
�1���

= exp���F0 − F1� − ��U0 − U1��

= exp�− ��F + �WF�

= exp��WD
F� , �A1a�

and similarly,

�1���
�0���

= exp��WD
R���� , �A1b�

where the definitions of work �4a� and �4b� and dissipated
work �7a� and �7b� were used.

We integrate �1 from �A1a� over all configurations, but
consider contributions only from those � for which the for-
ward dissipated work value takes on a specific value, WD:

� d� �0���exp�− �WD
F�������WD − �WD

F����

=� d� �1������WD − �WD
F���� . �A2�

Since, from �A1a� and �A1b�,

WD
F��� = − WD

R��� ,

�A2� becomes

� d� �0���exp�− �WD
F�������WD − �WD

F����

=� d� �1������WD + �WD
R���� . �A3�

We define PF�WD� as the probability of observing a given
dissipated work value in the forward switching process, and
it can be expressed as an integral over all configurations
which yield this value,

PF�WD� =� d� �0������WD − �WD
F���� . �A4a�
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Likewise, the probability of observing a given dissipated
work value in the reverse switching process is

PR�WD� =� d� �1������WD − �WD
R���� . �A4b�

With these definitions, �A3� may be written as

exp�− �WD�PF��WD� = PR�− �WD� ,

which is equivalent to �1�.

2. Fluctuation theorem and hysteresis error

The relationship between some arbitrary deviation of a
simulation from the Crooks fluctuation theorem and the hys-
teresis error is derived by first rewriting Eq. �8� as

PR
��− �WD�exp��WD� = PF

���WD�exp�− ��FT
� � . �A5�

Inserting the �FFEP
R definition �5b� into the definition of the

hysteresis error �6�, expanding the reverse work with �7b�
and using the �FFEP

F estimate for �F,

�H = �FFEP
F − �−1 ln
exp�− �WR��1

�

=�FFEP
F − �−1 ln�
exp�− �WD

R��1
�

�exp���FFEP
F ��

=− �−1 ln�
exp�− �WD
R��1

�� .

We now expand the estimated ensemble average as an inte-
gral over all values of �WD

F , with PR
� the normalized histo-

gram of �WD
R obtained from a simulation,

�H = − �−1 ln��
−�

+�

d��WD
R�PR

���WD
R�exp�− �WD

R�� .

As �WD
R is a dummy variable, we change it to −�WD

�H = − �−1 ln��
−�

+�

d��WD�PR
��− �WD�exp��WD�� ,

where we implicitly multiplied the integrand by −1 to pre-
serve the limits of integration. With �A5� the above can be
written as

�H = − �−1 ln��
−�

+�

d��WD�PF
���WD�exp�− ��FT

� �� ,

which reduces to �9�.

3. Interreplica equilibrium and hysteresis error

We can relate an small arbitrary error in the calculated
distribution �N� to the hysteresis error by considering a small
error ����0 ,�1� in the otherwise correctly estimated �N� . Re-
writing �13�,

�N� + �� = �N exp�− ��Uswap� ,

we integrate over all configuration pairs and rewrite �Uswap
with �11b�,

� d�0d�1�N� +� d�0d�1��

=� d�0d�1�0��0��1��1�exp�− �WF��0��� d�1�1��1�

�exp�− �WR��1�� . �A6�

With the sampling error contained in ��, the �N� term �ex-
panded with �12b�� is identically 1. Taking the logarithm and
dividing by �, �A6� becomes

− �−1 ln�1 +� d�0d�1��� = �FFEP
R − �FFEP

F , �A7�

where we have used the �FFEP definitions �5a� and �5b�.
With the approximation ln�1+x�
x for small x and the defi-
nition of �H, Eq. �6�, we obtain Eq. �14�.

4. Linearized average swap probability

Here we consider the average Fermi swap probability be-
tween two replicas whose � parameters differ by a small
amount � �written as �� in the text�. For convenience we
define

� � ��Uswap

=��U���0� − U0��0� + U0���� − U������ ,

where �0 and �� are configurations drawn from the equilib-
rium distributions U0 and U� parametrized by �0 and �0+�,
respectively. We expand U� as a Taylor series about �0,

U���� = U0��� + �V0��� +
�2

2
W0��� + O��3� ,

with

V0 � � �U

��
�

�=�0

,

W0 � � �2U

��2 �
�=�0

.

� can then be written as

� = ���V0��0� − V0����� +
��2

2
�W0��0� − W0����� .

Note that � is small �O����; thus, with the identities

exp�x� = 1 + x + x2/2 + ¯ , �A8a�

1

1 + x
= 1 − x + x2 − ¯ , �A8b�

we may write the Fermi swap probability between configu-
rations �0 and �� as
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pswap =
1

1 + exp �

=
1

2
� 1

1 + �/2 + �2/4 + O��3��
=

1

2
�1 − ��/2 + �2/4� + ��/2 + �2/4�2 + O��3��

=
1

2
−

1

4
� + O��3� .

The average swap probability is the ensemble average over
all configuration pairs,



pswap�0�� =
1

2
−

1

4


��0��

=
1

2
−

1

4
���
V0�0 +

��2

2

W0�0 − ��
V0��

−
��2

2

W0��� + O��3� . �A9�

To evaluate 
¯��, we first obtain Q�, the partition function at
��0+��,

Q� �� d� exp�− �U��

=� d� exp�− �U0��1 − ��V0 + O��2��

=Q0�1 − ��
V0�0 + O��2��

and its reciprocal

Q�
−1 = Q0

−1�1 + ��
V0�0 + O��2�� .

We can now evaluate 
V0�� and 
W0��, retaining only terms
which will remain O��2� or larger in �A9�:


V0�� � Q�
−1� d� exp�− �U��V0

=Q0
−1�1 + ��
V0�0�� d��1 − ��V0�exp�− �U0�V0

=�1 + ��
V0�0��
V0�0 − ��
V0
2�0�

=
V0�0 + ���
V0�0
2 − 
V0

2�0�

and


W0�� � Q�
−1� d� exp�− �U��W0

=Q0
−1�1 + O����� d� exp�− �U0�W0�1 − O����

=
W0�0 + O��� .

Finally, �A9� becomes



pswap�0�� =
1

2
−

�2�2

4
�
V0

2�0 − 
V0�0
2� + O��3� , �A10�

equivalent to Eq. �18�, which is valid for small �.

APPENDIX B: ULJ AND UC FUNCTIONAL FORMS

The functional forms of both the Coulomb and Lennard-
Jones potentials were developed for this work based on three
criteria

�i� Configurations where the solute and solvent overlap
may be observed for �=0. For such configurations, we re-
quire �a� that swaps be permitted with reasonable frequency
for small � �e.g., �=0.1� and �b� that the swap probabilities
fall off quickly thereafter; in particular, we wish to avoid the
situation where the swap probability declines only very near
�=1.0.

�ii� We require that �U /�� not always be zero for �=0 to
avoid complications with the thermodynamic integration �TI�
estimator. While we do not report results using TI in this
work, we wish to construct a � schedule that works with all
estimators.

�iii� In this work, �LJ=�C. Therefore, Lennard-Jones re-
pulsion must dominate Coulombic attraction at very small
atomic separations.

While various ways to scale the potential have been dis-
cussed in the literature �33–35�, none of these satisfied all of
our requirements. It should be noted that condition �iii� is
somewhat arbitrary and more common scaled potentials may
be used if the insertion process scales the Lennard-Jones
prior to the Coulomb potential. The specific profiles of Figs.
2�a� are dependent on the choice of Coulomb and Lennard
Jones functional forms, as well as the relationship between
�C and �LJ.

Coulomb scaling. We employ a modified version of the
linear soft-core scaling �34�; for two atoms of charges qi and
qj distance r apart, the potential energy is �C as

UC�r,�C� = �C
qiqj

�C�1 − �C� + r
, �B1�

where �C controls the “soft core” term and for small �C
imposes a minimum effective atomic separation. �C=1.5 Å
for all simulations in this work.

Lennard-Jones scaling. The Lennard-Jones potential be-
tween two particles may be written generally as

ULJ�r,�LJ� = BA�A − 1� , �B2�

where, for the unscaled Lennard-Jones potential,

A�r� = ��

r
�6

, B = 4� .

Simple linear scaling by �LJ of the Lennard-Jones potential is
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known to be unsatisfactory, and a number of alternate forms
have been introduced. We developed the exponential soft
core

A�r,�LJ� = 1���LJ�1 − �LJ�b + � r

�
�6� , �B3a�

B��LJ� = 4�
1 − e−k�LJ

1 − e−k , �B3b�

with a=4, k=1, and �LJ=0.5 Å. The precise position along
the � coordinate of the swap probability trough �see Fig. 3� is
specific to this Lennard-Jones potential.
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